ACFEE ACTIVE POWER FILTER

AcFee APF (V3.0)

Operation manual

Safety Instructions

These safety instructions apply to all active power filter device of our company.

Ignoring these instructions could result in personal injury and death.

Specific Purpose

Active power filter (APF for short, the same below) is a new generation of power quality control device, which is mainly used for harmonic control.

Please pay attention to whether there is reactive power compensation device composed of passive components such as capacitors and reactors in the same system. If the settings are improper, APF may conflict with these passive compensation device, or the compensation ability cannot be fully exerted.

Operator Qualification

Only qualified personnel engaged in electrical work are allowed to operate this device.

The installation, operation monitoring and fault repair of APF can only be operated by professionals, and the personnel who operate the device must be familiar with this manual.

Exemption from Liability

The content of the user manual describes the characteristics of the product, but is usually not a guarantee.

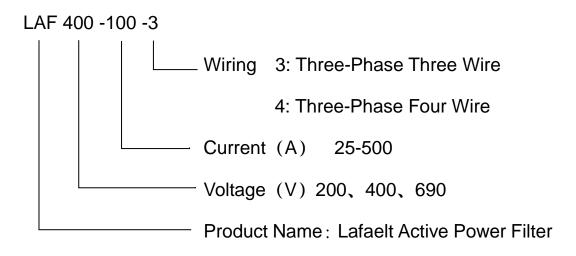
If you encounter any questions and problems, please contact us in time to avoid irreparable accidents!

Catalogue

Safety Instruction	错误 ! 未定义书签。
About This Manual	错误!未定义书签。
Brief Instruction	错误 ! 未定义书签。
Model Description	错误 ! 未定义书签。
AcFee Series APF Features	5
Technical Specifications	错误!未定义书签。
Working Principle	错误!未定义书签。
Dynamic and Steady-State Features of A	PF 12
Initial Inspection and Installation	
Initial Inspection	
Location Selection	
Device Handling	
Installation Environment	错误!未定义书签。
Touch Screen Dimension	错误!未定义书签。
APF Dimension	
Optional Accessories Installation	
External Incoming Cable Specification	错误!未定义书签。
User Operation Guideline	错误!未定义书签。
Main Menu	错误!未定义书签。
Real-time Date	
Model Information	错误!未定义书签。
User Setting	
Communication Setting	错误!未定义书签。
Carbinet Setting	
System Setting	
Operation Control	
Current Records	
History Records	错误!未定义书签。
List of Common Faults	
APF Communication Data Point Table	
After-Sales Service	

About This Manual

Before installing and operating the SVG, this manual should be read carefully. This manual contains the necessary information for the perfect performance of the device and to avoid incorrect operation.


The following symbols, terms and names are used in this manual. Table1 Use of symbols, terms and names

	Note	
ATTENTION !	Follow the instructions in the manual to prevent device damage	
	Follow the instructions in the manual to prevent device damage and personal injury	
Warning	Follow the instructions in the manual to prevent serious accidents	
Danger	Follow the instructions in the manual to prevent serious accidents and fatal injury	
Danger	Follow the instructions in the manual to prevent serious accidents and fatal injury caused by dangerous voltage	
【Note】	Please pay attention to the content in [Note] for explanation	

Instruction

Our company wholeheartedly solves power quality problems for users. APF has unprecedented comprehensive power quality management capabilities. APF can filter out harmonic numbers ranging from 2nd to 51st orders at the same time, the filtering ability can reach more than 97%, the power factor of reactive power compensation can reach more than 95%, and the complete compensation time for step-change harmonics is less than 10ms. Multiple APFs can run in parallel at the same time, and the efficiency of the whole machine is greater than 97.5%. It is completely suitable for various situations in the industrial and civil fields, and is the best solution for nonlinear load harmonic control and reactive power compensation.

Model Description

AcFee Series Features

 Modular design, the failure of any module will not affect the normal operation of other modules, which greatly improve the reliability of the whole machine.

- 2. It can simultaneously filter out the harmonic current below the 2nd to 51st orders, or select order compensation. Reactive power compensation can make the power factor reach 1. It can correct unbalanced three-phase current to complete balance. Reactive power can be compensated and harmonics be controlled at the same time.
- 3. Dual-core DSP is used for algorithm processing, the calculation rate is much higher than that of single-core DSP control mode, the response speed is faster, and the anti-interference ability is extremely strong. Using sliding window iterative DFT detection algorithm, the calculation speed is fast, the instantaneous response time is less than 0.1ms, and the device compensation response time is less than 10ms.
- 4. Provide more than 20 kinds of protection functions, for example: different levels of overvoltage and overcurrent will trigger different levels of software/hardware protection; over temperature and overcurrent can trigger load shedding protection.
- Onsite CT wiring location can choose load side or grid side for sampling. CT direction is optional, just make sure that the three phases are in the same direction.
- It can be paralleled with any LC passive device onsite without resonance.
- A reliable current limiting control link is adopted, when the current to be compensated is larger than the rated capacity of the APF, the device can limit the current at 100% of the

output automatically, maintain normal operation, and will not happen faults such as overload or burned;

- 8. The main circuit adopts tri-level three leg, with high output waveform quality and low switching loss.
- 9. It adopts a 7-inch high definition touch screen, which is easy to operate. The screen displays operating parameters of the system and device in real time, with faults alarm and recall function. At the same time, you can use the dual serial port function of the touch screen to upload data to the 4G cloud platform or a computer that supports RS485 for remote monitoring.
- 10. The APF input terminal is designed according to the second level lighting protection, and is equipped with reliable surge protectors, which play a protective role in lighting strikes to avoid device damaging.
- 11. With layered design, dust will not adhere to the circuit board, which is suitable for use under harsh working conditions.

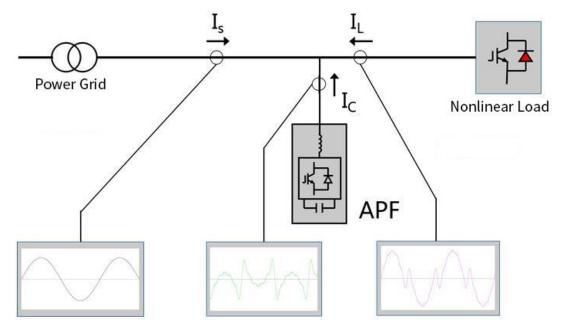

Technical Specifications

Table 2 Technical Specifications					
			AF	PF	
Specifications	Module Specification	50A	75A	100A	150A
	Working Voltage	200	V/400V/69	0V (±15%	»)
Input	Working Frequency	50Hz (-10% ~ +10%)			
	Current Transformer		100:5 ~	10000:5	
	Harmonics Compensation		2nd-	51st	
Function	Harmonics Rejection Rate		>97	7%	
	Compensation for Reactive		-1~+1 ad	-	
	Communication Method	RS232,	485, Modb TCP/IP (I, CAN,
Protocol	Communication Interface	F	RS485, CA	N, Net Por	t
	PC Software	Yes, all the parameters can be set through PC computer			
	Fault Alarm	See the lis	t of commo the p		the end of
	Monitor	Support ir model/cen	ndependen tralized mc macl	onitoring of	-
	Full Response Time		<10	ms	
	Active Loss		<2.	5%	
	Cooling Method		Smart Air	Cooling	
	Noise		<65	dB	
Technical Indicators	Sample/Control Frequency	l 15~20kHz			
	Equivalent Switching Frequency		15~20	0kHz	
	Protection	over-volta	20 kinds c age, under- er-current,	-voltage, ov	/er-heat,

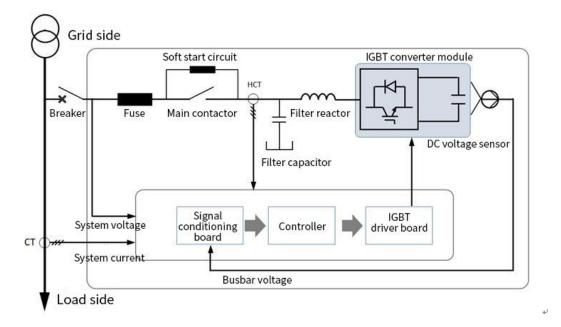
Table 2 Technical Specifications

	CT Install Location	Load side/Grid side Optional
Mechanical	Single Machine Size	See APF dimension drawing for details (P13-15)
Properties	Weight	25kg~40kg
Environment Requirements	Working Temperature	-10°C~+45°C
	Altitude	<5000 meters (Above 1500 meters, the capacity will reduce 1% for every additional 100 meters)
	Relative Humidity	<90%(25°C)
	Protection Class	IP20 (Higher protection class can be customized)

Working Principle

Picture1 APF Working Principle Chart

1. Working Principle

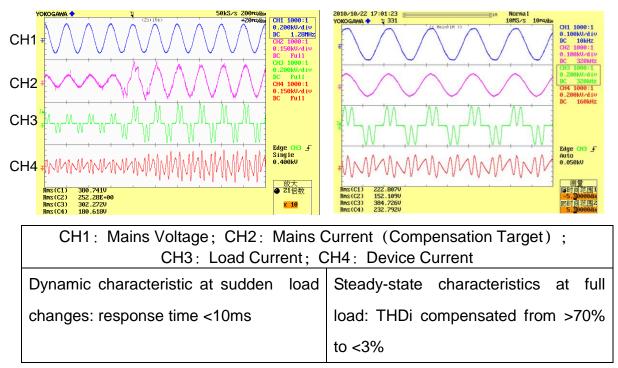

User can set parameters so that the device can simultaneously have the function of filtering harmonics, dynamic reactive power compensation, and three-phase unbalance compensation.

The principle of filtering harmonic is that APF collects the current signal in real time through current transformer, separates the harmonic part through the internal detection circuit, and generates equal to but opposite phase compensation current through IGBT power converter, to realize the function of filtering harmonic function.

The APF output compensation current changes dynamically and accurately according to harmonic content of the system, so there will be no over-compensation problem. In addition, there is internal overload protection function, when the harmonic content is larger than the APF capacity, the device can automatically limit the output to 100% of the rated capacity, no overload will happen.

The principle of three-phase unbalance compensation is that APF collects system current signals in real time through external current transformers and sends them to DSP for real-time calculation to judge where the system current is in an unbalanced state, and at the same time calculates the current difference of each phase when it reaches a balanced state. According to the current difference, closed loop and dynamically output PWM signal to control and drive IGBT to invert current of each phase, and control its natural transfer between the three phase, to make the current of system to reach a balanced state.

2. Principle of APF Internal Control


Picture2 APF internal control Schematic

As shown in Picture2, after the circuit breaker is closed, in order to prevent instantaneous impact from grid to DC bus capacitor when the power is turned on, APF first charges to DC busbar

capacitor through the soft start circuit, and the process lasts for more than ten seconds. DC capacitor acts as an energy storage device, and supplies energy by outputting compensation current through IGBT and internal reactor. DC capacitor acts as an energy storage device, and supplies energy by outputting compensation current through IGBT and internal reactor. APF collects current signal in real time through external CT and sends it to signal conditioning circuit, then sends it to controller. The controller separates the fundamental wave components, extracts all harmonic current, reactive power current, and three-phase unbalance current, and compares the collected current components with the compensated current send by APF to obtain the difference, and output to the drive circuit as a real-time compensation signal, which triggering the converter module to inject the compensated current to grid to realize closed-loop control and complete the compensation function.

Dynamic and Steady-state Characteristics of APF

APF is particularly worth mentioning for its superior dynamic and steady-state characteristics. The figure below shows the dynamic characteristics of APF when the load changes and the steady-state characteristics at full load.

Picture3 Dynamic and steady-state characteristics

Initial Inspection and Installation

This chapter introduces the relevant requirements that must be considered when selecting the location and wiring of the APF and its related device.

Due to the particularity of each site, this chapter does not introduce detailed installation steps, but only provides guidance for installers in general installation steps and methods, and the installer will handle it according to the specific conditions of the site.

r	
	 Requires three-phase four-wire or
	three-phase three-wire to input power
Attention!	 The standard APF system can be
	connected with three-phase four-wire
	(grounding) TN, TT and IT AC power
	distribution system (IEC60364-3) and
	three-phase three-wire AC power system.

	If used in an IT AC distribution system, a
	4-pole circuit breaker should be configured
	for the input, and reference can be made to
	relevant IT system standards
	 The APF can only be powered on with the
	approval of the commissioning engineer.
	 Installation of the APF should be performed
	by a qualified engineer with the instruction
\sim	of this manual. The APF involved in this
Warning	manual is shipped with detailed
	mechanical and electrical installation
	information.
	Mainly refer to the fatal danger caused by short
	circuit, electric shock caused by ungrounded or
	contact with liquid.
	 Make sure the APF is grounded.
	 Start the APF where liquid around is not
	allowed.
Danger	 Put APF in a high humility environment is not
5	allowed.
	Make sure to remove or open the cover/door with
	the APF powered off. In particular, please note
	that after the circuit breaker in the cabinet is
	powered off, the upper part of the circuit breaker is
	still charged, so the upper switch should be
	disconnected to ensure absolute safety.
	Poor Ventilation
	Poor ventilation or heat dissipation can cause
	overheating and damage the machine.
	 Vent openings are not allowed to cover.
	 If installed in a switch cabinet, ensure that the
	heat source has been removed, and the
	device is in the air duct of the cabinet.

	 Parts behinds protective cover that require tools to open are not user-operable parts.
	 Tearing the anti-tear label without permission
	is regarded as giving up the manufacturer's
	maintenance service.
Δ	• Strong recommendation: Although the
14	rack-mounted APF has its own circuit breaker,
	this manual still recommends users install a
Danger	circuit breaker between APF and the mains for
	isolation, and disconnect the breaker during
	maintenance to ensure absolute safety.

Initial Inspection

Following checks should be done before the APF installation:

- 1. Visually inspect the exterior and interior of the APF for shipping damage. In case of damage, notify the carrier immediately.
- Check the product label to confirm the correctness of the device. A nameplate is attached to the device shell to indicate the APF model, capacity and main parameters.

Position Selection

1. APF installation selection

The APF is designed for indoor installation and should be installed in a clean environment with good ventilation to ensure that the ambient temperature meets product specifications.

The APF is cooled by internal fans, the cool air enters the APF through the air grille in front of the APF cabinet, and the hot air is exhausted through the air grille at the rear of the APF cabinet. Do not block the vents.

Due to the air duct isolation, there is no need to install a dust filter in general environment, but for hash environment, such as high temperature, high humility, and a lot of conductive dust environment, please contact our product engineers when making on-site application solutions, and confirm the specific heat dissipation scheme.

There is a main touch screen on the front panel of the APF cabinet, which is used for centralized operation and display of running status. Each module can independently set its own parameters and query status.

The APF is installed in a cabinet, there are power terminals and CT input terminals at the cable inlet end of the APF chassis. In order to facilitate the maintenance of the APF during daily operation, in addition to meeting the local regulations, sufficient space should be reserved for facilitate maintenance personal to access cables.

	• The installation method is the cabinet mode,
	at least 600mm of ventilation space and rear
	maintenance space must be reserved at the
Attention!	front and rear outlets of the cabinet.
	 If necessary, indoor exhaust fans or air
	conditions should be installed to avoid room
	temperature increasing.

2. Storage

If there is no need to install the APF immediately, please store the APF indoor to avoid excessive humility or high temperature.

Device Handling

	 Since the weight of a single APF module is
	30kg-55kg, it is recommended to be
Attention!	transported by two people within a short
Allention	distance, if transported over a long
	distance, it needs to be completed with the
	help of transportation device.

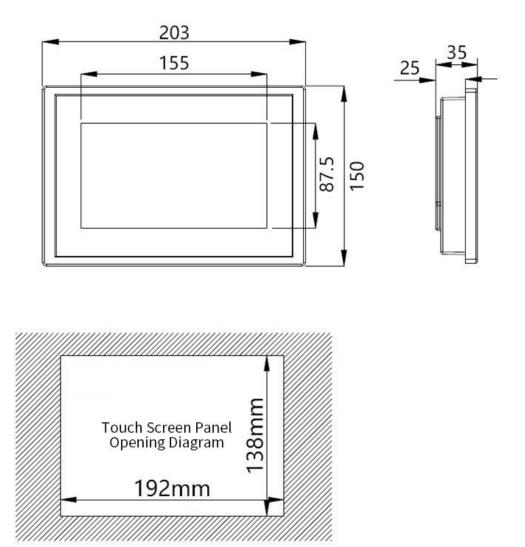
Installation Environment

In order to prolong the service life, the choice of APF position should ensure:

- 1. Easy wiring
- 2. Have enough operation space
- 3. Good ventilation to meet heat dissipation requirements
- 4. No corrosive gas around
- 5. No source of excessive humility and high temperature
- 6. Non-dusty environment
- 7. Comply with fire protection requirements

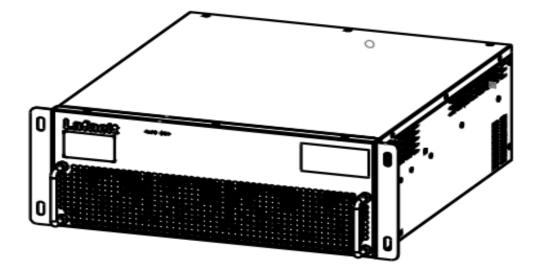
Please observe the environment and conditions in the table below:

Content Condition Attention		
Content	Condition	
	<1500m From 1500m to	Device overvoltage is designed
Altitude		according to Class III standard
Allitude		The device is derating by 1% for every
	5000m	100m rise
Temperature		Below -10 $^{\circ}$ C, heating device should be
	-10~40°C	installed in the cabinet
		Exceeds 40°C, ventilation or cooling
		facilities should be installed indoors

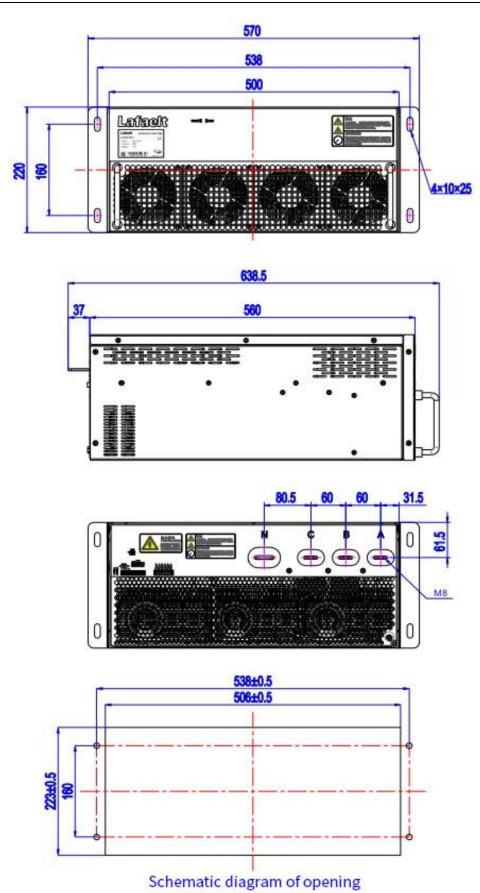

Table 3 Installation Environment

Humility	<90%	For higher requirements, please contact the manufacture
Installation	Modular	At least 600mm of ventilation space should be reserved at the front and rear outlets of the cabinet

Table 4 Conditions of Module Installation


Position	Minimum Required Installation Space
Тор	No need
Front side to front door panel (air inlet)	150mm
Back side to rear door panel (air outlet)	250mm
Left/Right side	No need

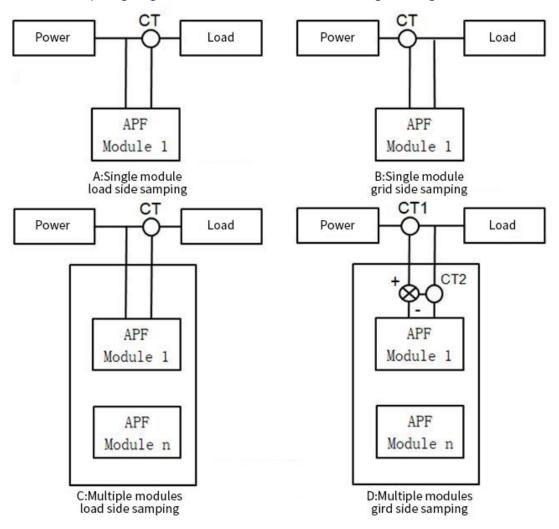
■ Touch Screen Size Chart



Picture4 Touch Screen Size

■ APF Dimension

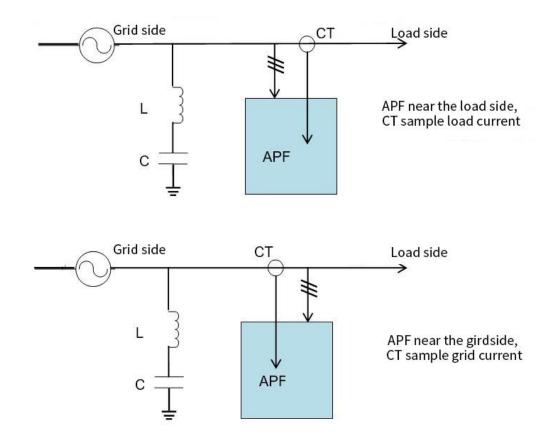
Picture5 Schematic Diagram of Module Appearance



Picture6 Module Dimensions

Optional accessories installation

1. External Sampling CT


The APF is installed in parallel in the system, and the current transformer CT can be optionally connected to the grid side or load side on the touch screen, default is load side for installation. If the on-site sampling is on the power grid side, the CT signal of the power grid needs to be subtracted from the total output current CT signal of the device in the cabinet with multiple modules in parallel to obtain the load side current, which will be input into the module as the final sampling signal. There are the following wiring methods:

In Figure6, if there are several modules in a cabinet, the total output current sampling CT2 is required in the cabinet to realize the sampling on the grid side.

For the wiring when APF and capacitor are used together, the principle is that the main incoming line point of APF is closer to the load than the capacitor. The reason is that APF compensates harmonics, the current flowing through is the fundamental wave when the APF access point faces the grid side, which is good for capacitor life.

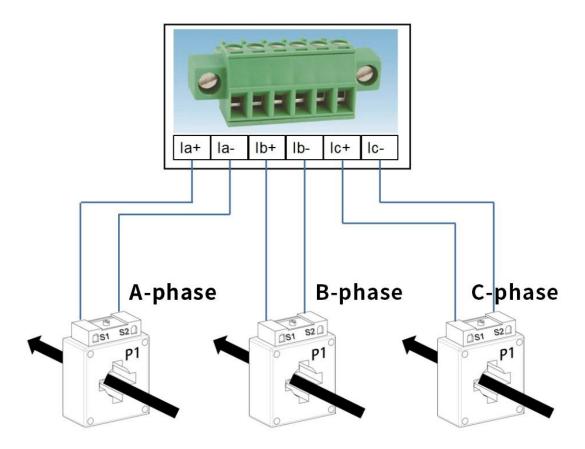
Picture8 The position relationship between APF and capacitor compensation

	If the current transformer is connected incorrectly, it may cause fatal by short circuit or electric shock				
Danger	 The power should be turned off before installing current transformer. 				
Bangor					

Make sure that the current transformer is in a
short circuit status until the CT connect
terminals of the APF are connected.
Short-circuit the current transformer with the
separable short-circuit terminal before separating
the current transformer and APF.

External CT Specification

Option	Model	Note
External CT Components	Chosen by Customer	The current transformation ratio can be freely selected from 100/5-10000/5. In view of AD sampling accuracy, too large CT transformation ratio will reduce the compensation accuracy.

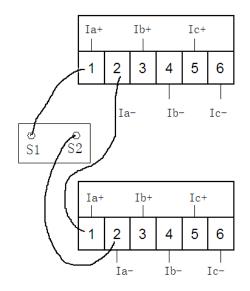

Table5 Current Transformer Specification

Parameters	Specification
Rated Secondary	5A
Current	54
	The primary current must be selected based on
Rated Primary	the maximum effective value of the current
Current	(Example: starting current 800A→use current
	transformer 1000A:5A)
Accuracy Class	Level 0.2 or 0.5
Rated Load (VA)	10 and above

① Wiring of current transformer when a single APF module is running.

In order to ensure that the current can be detected correctly, pay attention to the current direction and phase sequence of the current

transformer.



Picture9 Wiring of current transformer when a single APF module running

② Wiring of current transformer when multiple APF modules running in parallel.

The parallel operation of APF modules can increase the compensation current value.

When multiple APFs are connected in parallel, they share a set of current transformers, and the CT secondary side cables are connected in series.

Picture10 CT Cables Connection Diagram

[Note]: The installation of the electric part of APF device must be carried out by trained and qualified engineers in accordance with the "Electrical Code", and other personnel are strictly prohibited from installing. This manual only introduces basic content of the installation, for specific installation details, please refer to the Electrical Code.

CT cables choose 2.5mm2 shielded twisted pair RVSP2×2.5 (length L<15m), or choose 4mm2 shielded twisted pair RVSP2×4 (length 15m<L<30m).

External Incoming Cable Specification

Three-phase four-wire APF requires that the specifications of the two neutral cables must be the same as the phase cable, because the three and thrice times harmonics all flow through the neutral line, if the neutral line specification is reduced, it will cause danger.

The APF incoming cables under each current level are as follows:

Device Rated Current	50A	75A	100A	150A			
BVR Cable (mm2)	16	25	50	70			

Table 6 Cable Specification

User Operation Guideline

APF can be operated through touch screen.

Main Menu

After the device is powered on, the screen is in the startup state, and the startup process lasts for about 10 seconds. After the startup is successful, if the system is normal, the following page will be displayed, and you can see the main status of the device.

Picture11 Main Menu

There are eight parts in the main menu: real-time data, module information, user setting, real-time curve, operation control, current records, history records, manufacture information. Real-time Data

<mark>-</mark> Data Display		
	Grid Voltage(V):	
₩	Ua: 0.0 Ub: 0.0	Uc: 0.0
	Grid Current(A):	
	la: 0.0 lb: 0.0	lc: 0.0
40	Inverter Current(A):	
	la: 0.0 lb: 0.0	lc: 0.0

Picture12 Real-time Data (Voltage, Current, Inverter Current)

Real time			
	Power factor: PFa 0.00 Aberration rat THDia 0.0	PFb 0.00 e (%) THDib 0.0	PFc 0.00 THDic 0.0

Picture13 Real-time Data2 (Power Factor, Aberration Rate)

<mark>-</mark> Data Di	Bata Display									
Phase	3th(A)	5th(A)	7th(A)	9th(A)	11th(A)	13th(A)				
А	0.0	0.0	0.0	0.0	0.0	0.0				
В	0.0	0.0	0.0	0.0	0.0	0.0				
c	0.0	0.0	0.0	0.0	0.0	0.0				
			_							
† 5										

Picture14 Real-time Date3 (Detect the magnitude of each harmonic current)

Module Information

Module Informa	alize				
Module 1					
	Α	В	с		
Grid Voltage US(V):	0.0	0.0	0.0	F(Hz):	0.00
Grid Current Is(A):	0.0	0.0	0.0	Ti(°C):	0.0
Inverter Current Ic(A):	0.0	0.0	0.0	Te(°C):	0.0
	Vdc	V+	V-		
BUS Dc(V):	0.0	0.0	0.0	Th(°C):	0.0

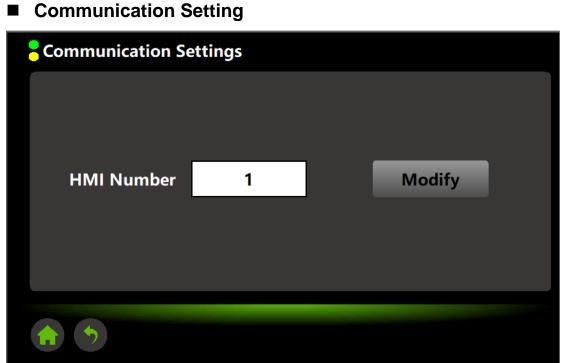
Picture15 Module Information

<mark>- 2</mark> C	Bota Display									
	Phase	3th(A)	5th(A)	7th(A)	9th(A)	11th(A)	13th(A)			
	Α	0.0	0.0	0.0	0.0	0.0	0.0			
	В	0.0	0.0	0.0	0.0	0.0	0.0			
-	c	0.0	0.0	0.0	0.0	0.0	0.0			
	7									

Picture16 Module Information2 (Detect the size of each harmonic current)

Module Information								
Module 1								
Grid Current	Phase A	Phase B	Phase C	Grid Voltage	Phase A	Phase B	Phase C	
THDI(%)	0.0	0.0	0.0	Voltage	0.0	0.0	0.0	
RMS(A)	0.0	0.0	0.0	Frequence	0.00	0.00	0.00	
Load Curent	Phase A	Phase B	Phase C	ıverter Currer	Phase A	Phase B	Phase C	
THDI(%)	0.0	0.0	0.0	Load	-1.#J	-1.#J	-1.#J	
RMS(A)	0.0	0.0	0.0	RMS(A)	0.0	0.0	0.0	

Picture17 Module Information3


Module Information								
Module 1								
		Active Power (KW)	Reactive Power (Kvar)	Apparent power (KVA)	Cos(phi)			
	Phase A	0.000	0.000	0.000	0.00			
Grid Side	Phase B	0.000	0.000	0.000	0.00			
	Phase C	0.000	0.000	0.000	0.00			
	Phase A	0.000	0.000	0.000	0.00			
Load	Phase B	0.000	0.000	0.000	0.00			
Side	Phase C	0.000	0.000	0.000	0.00			
		Picture18 M	odule Inforr	nation4				

User Setting

Click User Setting, enter technician user password:8888 to enter the user settings page

BUser Setti	ngs		
	Internal settings	Language Setting	
	Communication Settings	Overall Settings	
	System Configuration	Date setting	

Picture19 User Setting

Picture20 Communication Setting

The HMI number has been set to 1 by default before leaving the

factory.

Overall Setting

Overall Settings			
Number	0		
Total number of parallel	0		
Number of APFs	0		
Number of SVGs	0		

Picture21 Overall Setting

Number of units in the cabinet: corresponding to the number of

modules in the cabinet.

The number of all parallel units: for the total number of modules in the master and slave machines.

APF units: The number of corresponding modules of mixed cabinet (o for non-mixed cabinets)

Machine NO.	Code dial setting
1#	0 0 0
2#	100
3#	0 1 0
4#	1 1 0
5#	001
6#	1 0 1
7#	011
8#	1 1 1

Picture22 DIP Setting

When there are multiple modules in the whole cabinet, the numbers need to be set, and the dial code is set according to the device number. The picture above shows the code setting of the 1# device corresponding to the address 1, and order and so on. The dialing position is located in the upper left corner of the device back, and the table above shows the address dialing settings of 1#-8# devices.

Remarks: In Picture22, when the code is pulled to the top, it is ON, represented by the number 0; when it is pulled to the bottom, it is OFF, represented by the number 1

System Setting

System Setting	Module 1				
Operating Mod	Manual	AutoStart			
CT Position	Grid Side	Load Side			
CT Proportion	0				
CT Diretion	Fordword	Reverse			
Number of Parallel	0				
FIX_Q	0		0	0	0
Power Factor	0				
Mode	SVG	APF	ASVG	Three-Phas	se Imbalance

Picture23 System Setting

Click the parameter you want to set, and a corresponding dialog box will pop up to enter the parameter. More detailed internal control parameter settings have been set before leaving the factory. If it is necessary to change internal control parameters during operation, you should be authorized by manufacturer to enter internal advanced menu to change for device security.

- Operation Mode: This device is manual operation by default before leaving the factory
- Transformer Position: The sampling position of the external transformer has two types, "power side" and "load side", and the external transformer position can be changed by clicking the corresponding option
- Transformation Ratio of Transformers : The transformation ratio range of the external transformer is [100—10000]:5.
 For example, the transformation ratio of external transformers is 200:5, and the actual filling result should be

40. After clicking the input box, an input dialog box will pop up. According to the transformation ratio setting, the larger the transformation ratio, the lager the sampling scape and the larger sampling error. (Factory default is 0).

- Transformer Direction: the current flowing into the device is in the forward direction, while the current flowing out of the device is in the reverse direction.
- 5. Parallel number of Units: Set according to the actual number of units running in parallel.
- 6. Given Reactive Power: When the compensation mode is set to "reactive power", "Given reactive" "Given Qa" "Given Qb" "Given Qc" can be used as expert modes for manufactures and special customers, and users are prohibited from selection.
- 7. Power Factor: It can be set to 0~99 in corresponding to power factor 0~0.99 when the compensation mode is set to "reactive power", the operation method is the same as above, click the gray box to enter changed data. The State Grid stipulates that if the power factor is lower than 0.9, a penalty will be charged, if factor is larger than 0.9, rewards will be given. If the fixed power factor is required to run between 0.90 to 0.99, the power factor needs to be set.
- 8. Compensation Mode: If "Harmonic" is selected for harmonic compensation, the given reactive and power factor are displayed as 0, and it is the harmonic priority mode. If "reactive power" is selected for reactive power compensation, the given reactive and power factor are

displayed as 0, and it is reactive power priority at this time.

Operation Interface

Picture24 Operation Interface

If there is an abnormality in the device and it is in automatic mode, press the "Reset" and "Restart" buttons, and the machine will clear the fault and wait for about 2 minutes before starting itself. If in manual mode, press the "Start" button.

If the machine is in operation and needs to be stopped, press the "Stop" button. If you want to restart the device after finishing, press the "Reset" and "Restart" buttons.

Current Record

If there is any abnormality in the device, the fault code will be displayed in the lower right corner of "Module Information". Query specific exception information through "Current Record" menu. This page displays various internal and external faults and alarm information records during this power-on process.

[•] Current F	Record Modu	ıle 1
Date	Time	Alarm Value
1 5		

Picture25 Current Record

[Note]:

- If the user has not clicked to start the device after it is powered on, the device will automatically start and run after 10 minutes.
- 2. If a fault occurs during operation and the device will automatically shut down, then the device can automatically reboot after the fault disappearing.
- If the device is directly powered off after being powered on, the current state will be recorded, it will automatically read the parameter settings before powered off when it automatically starts running after it is powered on.

ATTENTION: In order to ensure the device safety and prevent misuse, more control parameter settings have been set before leaving the factory, and will not be disclosed in this manual.

History Record

Fault information will be recorded in "History Record" eventually.

<mark>-</mark> History R	ecord	
Date	Time	Alarm Value

Picture26 History Record

List of Common Faults

This device has the function of maintenance-free. When a fault occurs, the device will automatically reboot after a maximum of 5 minutes.

If the fault still occurs frequently after rebooting, please contact us and we will try our best to troubleshoot for you. For your personal safety, regardless any faults, do not disassemble the device without our permission, and products with damaged warranty label are not covered by the warranty.

NO.	Status Description	NO.	Status Description
0	No event	27	State machine timeout
1	Temporary voltage drop or rise in the grid	28	Assertion detection failure
2	Hardware output overcurrent fault	29	Task data sharing detection failure
3	Hardware bus voltage too high fault	30	High grid voltage fault 1
4	Hardware DC bus overvoltage	31	High grid voltage fault 2
5	Battery voltage too high fault	32	Low grid voltage fault 1
6	Mains power peak voltage too high fault	33	Low grid voltage fault 2
7	No mains power	34	Grid frequency fault
8	Starting busbar voltage too low	35	Code execution detection failure
9	Software output overcurrent fault	36	Reference voltage self test failure
10	Software busbar voltage too high fault	37	PCB temperature too high
11	Software half busbar voltage too high fault	38	Bridge arm IGBT temperature too high
12	Software busbar voltage unbalance fault	39	BUCK BOOST temperature too high

Diagram7 Common Faults

15	AC current offset calibration failed	40	temperature too low
16	AC voltage offset calibration failed	43	Heatsink temperature too high
17	DC current offset calibration failed	44	Output overcurrent
22	Unknow grid type	75	DSP short circuit between drive phases
24	RAM BIT Fault	76	Phase sequence error fault
25	ROM BIT Fault	77	Zero line overcurrent fault
26	CPU BIT Fault	78	Hardware peak overcurrent fault

APF Communication Data Point Table

1. Protocol RS485 MODBUS RTU, Communication Band Rate 9600BPS, Date Bit 8 bits, no check digit, stop bit 1. Support protocol read function code 03.

2. The address and data table of each module in the access screen are as follows:

Ν	Control Description	Unit	Danas	Damada	1# M	odule	2# M	odule	3# M	odule	4# M	odule	5# M	odule	6# M	odule	7# M	odule	8# M	odule
0	Content Description	Unit	Range	Remark	10HEX	16HEX														
1	Run Code			See "Fault Code Table"	48	30	148	94	248	F8	348	15C	448	1C0	548	224	648	288	748	2EC
2	Substrate T1	Ŷ	-2000~+2000	Actual Value = Communication Value	49	31	149	95	249	F9	349	15D	449	1C1	549	225	649	289	749	2ED
3	IGBT Model Temperature T2	Ŷ	-2000~+2000	Actual Value = Communication Value	50	32	150	96	250	FA	350	15E	450	1C2	550	226	650	28A	750	2EE
4	System Voltage A Phase	V	0~65535	Actual Value = Communication Value /10	51	33	151	97	251	FB	351	15F	451	1C3	551	227	651	28B	751	2EF
5	System Voltage B Phase	V	0~65535	Actual Value = Communication Value /10	52	34	152	98	252	FC	352	160	452	1C4	552	228	652	28C	752	2F0
6	System Voltage C Phase	V	0~65535	Actual Value = Communication Value /10	53	35	153	99	253	FD	353	161	453	1C5	553	229	653	28D	753	2F1
7	System Current A Phase	A	0~65535	Actual Value = Communication Value /10	54	36	154	9A	254	FE	354	162	454	1C6	554	22A	654	28E	754	2F2
8	System Current B Phase	A	0~65535	Actual Value = Communication Value /10	55	37	155	9B	255	FF	355	163	455	1C7	555	22B	655	28F	755	2F3
9	System Current C Phase	A	0~65535	Actual Value = Communication Value /10	56	38	156	9C	256	100	356	164	456	1C8	556	22C	656	290	756	2F4
10	Device Current A Phase	A	0~65535	Actual Value = Communication Value /10	57	39	157	9D	257	101	357	165	457	1C9	557	22D	657	291	757	2F5

1 betwee Current or location 2 3.4				1		1	1	1										1			
12 10% 0x00000000000000000000000000000000000	11		A	0~65535	Communication	58	ЗA	158	9E	258	102	358	166	458	1CA	558	22E	658	292	758	2F6
i i	12		A	0~65535	Communication	59	3B	159	9F	259	103	359	167	459	1CB	559	22F	659	293	759	2F7
10 2not 9 Abade 10 100 <th1< td=""><td>13</td><td>-</td><td>%</td><td>-100~100</td><td></td><td>60</td><td>3C</td><td>160</td><td>A0</td><td>260</td><td>104</td><td>360</td><td>168</td><td>460</td><td>1CC</td><td>560</td><td>230</td><td>660</td><td>294</td><td>760</td><td>2F8</td></th1<>	13	-	%	-100~100		60	3C	160	A0	260	104	360	168	460	1CC	560	230	660	294	760	2F8
1 Peter Or Phase % 10-100 Incl	14	-	%	-100~100		61	3D	161	A1	261	105	361	169	461	1CD	561	231	661	295	761	2F9
16 Advardadon Rate A Phase % Mase <	15	-	%	-100~100		62	3E	162	A2	262	106	362	16A	462	1CE	562	232	662	296	762	2FA
17 Aberration Rate Phase % % Image	16	Aberration Rate A	%			63	3F	163	A3	263	107	363	16B	463	1CF	563	233	663	297	763	2FB
18 Aberaion Race Pase % Second Pase % Second Pase % Actual Value = Communication Value % % Actual Value = Communication Value % % Actual Value = Communication Value % % % Actual Value = Communication Value %	17	Aberration Rate B	%			64	40	164	A4	264	108	364	16C	464	1D0	564	234	664	298	764	2FC
19 Imbalance A Phase % % 0-6533 Communication value % <	18	Aberration Rate C	%			65	41	165	A5	265	109	365	16D	465	1D1	565	235	665	299	765	2FD
20 Imbalance B Phase % % 0-6535 Communication value imbalance C Phase % % 6404 Value 68 44 168 AB 268 100 368 170 468 104 568 238 668 290 768 300 21 Imbalance C Phase % 0-65535 Actual Value = Communication value 68 44 168 AB 268 100 368 170 468 104 568 238 668 290 768 300 22 Total DC Voltage Y 0-65535 Actual Value = Communication value 69 45 169 269 100 369 171 469 105 569 239 669 29D 769 301 23 Total DC Voltage Y 0-65535 Actual Value = Communication value 100 <td< td=""><td>19</td><td>Imbalance A Phase</td><td>%</td><td>0~65535</td><td>Communication</td><td>66</td><td>42</td><td>166</td><td>A6</td><td>266</td><td>10A</td><td>366</td><td>16E</td><td>466</td><td>1D2</td><td>566</td><td>236</td><td>666</td><td>29A</td><td>766</td><td>2FE</td></td<>	19	Imbalance A Phase	%	0~65535	Communication	66	42	166	A6	266	10A	366	16E	466	1D2	566	236	666	29A	766	2FE
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	Imbalance B Phase	%	0~65535	Communication	67	43	167	A7	267	10B	367	16F	467	1D3	567	237	667	29B	767	2FF
22 Total DC Voltage V 0-65535 Communication Value Image: Communication Value	21	Imbalance C Phase	%	0~65535	Communication	68	44	168	A8	268	10C	368	170	468	1D4	568	238	668	29C	768	300
23 DC Voltage+ V 0-65535 Communication Value C	22	Total DC Voltage	v	0~65535	Communication	69	45	169	A9	269	10D	369	171	469	1D5	569	239	669	29D	769	301
24 DC Voltage- V 0-65535 Actual Value = 71 47 171 AB 271 10F 371 173 471 1D7 571 23B 671 29F 771 303	23	DC Voltage+	v	0~65535	Communication	70	46	170	AA	270	10E	370	172	470	1D6	570	23A	670	29E	770	302
	24	DC Voltage-	V	0~65535	Actual Value =	71	47	171	AB	271	10F	371	173	471	1D7	571	23B	671	29F	771	303

				Communication Value																
25	Phase A CT Transformation Ratio		-30000~+3000 0	Actual Value = Communication Value	72	48	172	AC	272	110	372	174	472	1D8	572	23C	672	2A0	772	304
26	Heat Sink Temperature	¢	-2000~+2000	Actual Value = Communication Value	73	49	173	AD	273	111	373	175	473	1D9	573	23D	673	2A1	773	305
27	Phase B CT Transformation Ratio		-30000~+3000 0	Actual Value = Communication Value	74	4A	174	AE	274	112	374	176	474	1DA	574	23E	674	2A2	774	306
28	Parallel Number		0~65535	Actual Value = Communication Value	75	4B	175	AF	275	113	375	177	475	1DB	575	23F	675	2A3	775	307
29	Reactive Value Settings	kvar	-100~100	Actual Value = Communication Value	76	4C	176	B0	276	114	376	178	476	1DC	576	240	676	2A4	776	308

After-sale Service

The products of our company are guaranteed for 1 year, and the warranty period starts from the date of product sale. If the product faults or the parts are damaged during the warranty period, our company will provide free maintenance after it is identified by our technicians as occurring under normal use.

In the following cases, material costs and maintenance man-hours will be charged:

- Damage caused by not following the instructions in the manual
- Damage caused by unauthorized desoldering of parts or modification
- The operation exceeds the "Three Guarantees" period

Jiangsu Lafaelt Electric Co.,Ltd

Hotline: 400-882-1973

Tel: +86 0510-81811717

Email: marketing@lafaelt.com

Sales Center Add: 2nd Floor, No. 268, Tongxie Road,

Changning District, Shanghai, China

Factory Add: No. 79, Qunxing Road, Xinwu District, Wuxi City,

Jiangsu Province, China

Net: www.lafaelt.cn